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Numerical models seek to represent the interaction between landscape forms and processes 
through mathematical equations. By integrating these equations over space and time, numerical 
models have allowed geomorphologists to extend enquiry beyond observation alone, and explore 
landscape dynamics over a range of temporal and spatial scales. Choosing the correct temporal 
and spatial scale of investigation, the correct processes that control landscape form at these 
scales, and then converting this conceptual model to a mathematical representation of these 
process-form interactions is not straightforward. The decision requires careful consideration of 
process dominance and scale, the ability of equations to parameterise these processes, 
computational resources, and data availability to constrain model parameters and evaluate model 
performance. These issues shall be considered in general terms, and illustrated mainly with 
reference to catchment systems. Finally, numerical modelling of geomorphic systems is considered 
from a Bayesian perspective to provide a conceptual grounding for the development and 
application of numerical models, and therefore for their role in geomorphic enquiry. 
KEYWORDS: Numerical modelling; Scale; Resolution; Evaluation; Data; Uncertainty. 

Introduction 
The interaction of landscape form and 
process may be represented mathematically 
in the form of a numerical model. Coupling 
such models with observations provides a 
formal framework to assemble scientific 
understanding, and a powerful tool to 
investigate landscape change. Numerical 
models provide some liberation from the 
temporal and spatial shackles imposed by 
enquiry through observation alone; models 
have allowed exploration of landscape 
processes and evolution over spatial scales 
ranging from particles to plate tectonics and 
temporal scales ranging from milliseconds to 
millennia (Figure 1; Bishop, 2007; Hardy, 
2005). Numerical models have shown 
potential as powerful tools for understanding 
reductionist process-form interactions (e.g. 
Schmeeckle and Nelson, 2003; Wainwright et 
al., 2008a), and also the relative importance 
of autogenic versus allogenic controls for 
larger scale system behaviour (Coulthard et 
al., 2005; Nicholas and Quine, 2007b; 
Wainwright and Parsons, 2002).  

 

 
Figure 1. Contrasting scales of model 
application: grain scale predictions of particle 
paths (black lines) over water worked gravel 
(modified from  Hardy, 2005); convergent 
orogen formation modelling, considering 
techtonic uplift and surface erosion (modified 
from Willett and Brandon, 2002). 
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In order to fully exploit the potential for 
numerical models to elicit understanding of 
form-process interactions, and inform 
landscape management, numerical models 
must be developed and applied carefully 
considering three key questions:  
 
1. What are the relevant form-process 

interactions at the scale of enquiry?  
2. What are the correct mathematical 

representations of these processes?  
3. Are there appropriate data to constrain 

model parameters and evaluate model 
predictions?  

The main modelling issues that need to be 
considered in order to address these 
questions are presented here to provide a 
basis for more domain specific sections in 
Chapter 5, and illustrated mainly with 
reference to catchment systems. The 
strength of the assumptions made in 
developing and applying a model will 
determine the validity of model predictions, 
the strength of conclusions derived from 
model application, and therefore the ability of 
models to inform us of real world process-
form phenomena. A Bayesian approach 
emphasising iterative dialogue between 
model development and data collection is 
recommended as a robust means to 
appropriately develop numerical models, and 
therefore geomorphic understanding. 
 
Publications reviewing specific areas of 
geomorphic modelling (e.g. Bishop, 2007; 
Coulthard, 2001; Livingstone et al., 2007; 
Merritt et al., 2003; Morgan and Nearing, 
2010; Pelletier, 2011; Reinhardt et al., 2010; 
Tucker and Hancock, 2010; Van de Wiel et 
al., 2011; Wainwright et al., 2008a), and 
publications expanding on the more general 
issues of model application to natural 
systems considered here (e.g. Beven, 2002; 
Bloschl and Sivapalan, 1995; Brazier et al., 
2011; Church, 1996; Krueger et al., 2009; 
Nicholas, 2005; Refsgaard et al., 2006; Van 
de Wiel et al., 2011; Wainwright and 
Mulligan, 2004; Wilcock and Iverson, 2003) 
are additionally recommended. 

 
Model structure 
A model M contains equations with 
associated parameters 𝛉𝛉 that represent the 
functional relationship between a vector of 

driving conditions D (e.g. rainfall), a vector of 
initial system states X0 (e.g. landscape 
elevation), and vectors (with length t, the 
length of the simulation) representing future 
system states X, and outputs Y (e.g. 
catchment runoff/ sediment flux): 

 
𝐘𝐘,𝐗𝐗 = M(𝛉𝛉,𝐗𝐗𝟎𝟎,𝐃𝐃)                                     (1) 

 
Geomorphic models are generally concerned 
with the action of a number of processes 
which locally transport mass (e.g. sediment, 
including organics and nutrients) that lead to 
changes in landscape form (X) at a specific 
point over time (t). Though models generally 
differ in the processes evoked to move 
sediment, a fundamental approach governing 
most geomorphic models is to divide the 
landscape into units called control volumes 
(in 1, 2 or 3 dimensions). In most models a 
quasi-2D conservation of mass is applied by 
calculating the change in elevation 𝑑𝑑𝑑𝑑 in 
response to sediment flux into and out of a 
control, where dx indicates the size of the 
control in one dimension. The control may be 
divided into three stores, and M partly 
specified by (Figure 2; Tucker and Hancock, 
2010; Wainwright et al., 2008a): 
 
𝜕𝜕𝐻𝐻𝑟𝑟
𝜕𝜕𝜕𝜕 = 𝑇𝑇𝑢𝑢 − 𝑆𝑆𝑐𝑐                                                  (2) 

 

𝜕𝜕𝐻𝐻𝑠𝑠
𝑑𝑑𝜕𝜕

= 𝑑𝑑 − 𝜀𝜀 + 𝑆𝑆𝑐𝑐                                            (3) 

 
𝜕𝜕𝐻𝐻𝜕𝜕
𝜕𝜕𝜕𝜕 = −  

𝜕𝜕𝑞𝑞𝑠𝑠
𝜕𝜕𝜕𝜕 + 𝜀𝜀 − 𝑑𝑑                                      (4) 

 

where Hr is depth of bedrock (m), Tu is 
tectonic uplift (m); Sc (ms-1) represents the 
rate of conversion of rock to soil/surface 
regolith, Hs (m); d is sediment deposition rate 
(ms-1) and ɛ is sediment entrainment rate 
(ms-1) from and into the equivalent depth of 
sediment in transport Ht (m), and qs (m2s-1)  is 
sediment discharge across the surface, dx. 
Up to specifying the source terms, accounting 
for density/particle size differences between 
the stores, and developing an appropriate 
numerical solution, Equations 2-4 can 
generally be used to simulate the evolution of 
any point in the landscape, though some 
specific exceptions apply (Tucker and 
Hancock, 2010).  
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Figure 2. Key fluxes governing sediment 
movement within a one-dimensional control 
volume. The temporal scale of model 
application determines the relevant equations 
and methods of parameterisation. 
 

To completely specify M, first a conceptual 
understanding of the relevant source terms 
on the right hand side of equations 2-4 and 
the processes that control them are required 
at the scale of enquiry. Second, the 
conceptual model needs to be codified into a 
set of equations, and an appropriate 
analytical/numerical solution sought. As with 
all geomorphic enquiry, an understanding of 
scale underpins the specification of these 
source terms, and the answers to the 
questions posed in the introduction. 

 
Process dominance and scale  
The processes that govern changes in Hr 
operate over larger timescales (e.g. are 
relatively slower) than the processes 
governing changes in Hs which in turn are 
slower than processes governing changes in 
Ht. Therefore as the timescale over which a 
model needs to be applied tends to zero, so 
the number of relevant stores and processes 
that control 𝑑𝑑𝑑𝑑 also reduce (Figure 2).  

In catchment systems over millennia climate-
induced fluctuations in sediment transport 
and rock breakdown, alongside tectonic uplift, 
govern the evolution of plate tectonics. 
Therefore, changes in 𝐻𝐻𝑟𝑟 are important and 
need to be included in the conceptual model 
of landscape change (Bishop, 2007).  Over 
decadal and centennial timescales, 
catchments predominantly evolve in 
response to climate-induced fluctuations in 
sediment transport, and therefore the stores 
of sediment in the landscape evolve through 
transport between control volumes, and 𝐻𝐻𝑟𝑟 
may be considered fixed and the processes 
that control them (Tu and Sc) relaxed. At this 
scale the state vector (X) needs to consider 
not only the evolution of sediment and mass, 
but also controlling and interacting factors 
such as vegetation (Istanbulluoglu and Bras, 
2005; Reinhardt et al., 2010) and potentially 
anthropogenic influence (Wainwright and 
Millington, 2010). Alongside exerting control 
on sediment flux directly, these factors will 
also respond independently to climatic 
changes, creating potentially complex, and 
non-linear landscape feedbacks (Corenblit 
and Steiger, 2009). At even smaller temporal 
scales, sediment flux is controlled by current 
weather conditions and the effect of previous 
events operating at all scales (Schumm and 
Lichty, 1965), which manifest their effects 
through the model initial conditions. 
Therefore many system states are fixed (e.g. 
Hr and vegetation cover) and only need to be 
specified in the initial conditions (X0), with no 
additional equations required to simulate their 
evolution. 

Similarly, over different spatial scales 
different processes will become important in 
controlling landscape behaviour. At small 
spatial scales on hill slopes instantaneous 
fluxes of water (raindrops and overland flow) 
control grain scale movements of sediment 
(Brazier et al., 2011). As catchment size 
increases overland flow concentrates to form 
rills, gullies and channels which, alongside 
mass movements, are increasingly important 
in controlling catchment sediment flux 
(Nichols, 2006). Therefore as the spatial and 
temporal scales of interest reduce, the range 
of processes that must be considered also 
reduces, and other, larger scale processes 
are manifest through the model boundary 
conditions (X0).  

Developing a model to address a specific 
problem therefore requires a sound 
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conceptual understanding of the time and 
space scales over which processes operate 
to control the landforms in question. The 
extent to which a process is represented in a 
model, however, depends on its 
mathematical formulation. 

 
Process representation 

Experimental work has been conducted, both 
in the laboratory and in the field, to 
investigate surface process, such as rain-
splash and overland flow driven erosion 
(Furbish et al., 2009; Wainwright et al., 2000). 
Alongside fundamental, physical equations 
(e.g. Navier-Stokes equations of fluid 
motion), many such studies have provided us 
with predictive equations from which process-
form interactions can be simulated (Tucker 
and Hancock, 2010; Wilcock and Crowe, 
2003). When combined with conservation of 
mass equations and integrated over time, 
such models represent the fundamental 
mechanisms by which climatic fluctuations 
manifest in catchment-scale landscape 
evolution. 

Given the temporal and spatial constraints on 
observation, the majority of experimental 
work has attempted to parameterise the 
processes in equation 4, through what may 
be determined process-based models 
(Wainwright et al., 2008a; Wilcock and 
Crowe, 2003). However, even at small spatial 
and temporal (reductionist/observational) 
scales, different process parameterisations 
have been developed.  

In catchment systems erosion, transport and 
deposition of sediment by water is controlled 
by both transport limited processes (TL; e.g. 
presence and power/stress imparted by water 
at the surface) and supply/detachment limited 
processes (SL; e.g. the resistive forces at the 
sediment bed that impede sediment 
movement). The most widely applied 
predictive equations have calculated a 
sediment transport rate (qs) as a function of 
TL and/or SL, which implicitly assume 
sediment transport is in equilibrium (and 
potentially at some capacity), and evolve Hs 
according to sediment flux into and out of the 
cell support (Wainwright et al., 2008a; 
Wilcock and Crowe, 2003). Though such 
methods may provide useful predictions, 
changes in sediment transport and soil depth 
are inherently in disequilibrium. Alternative 
parameterisations have been developed that 

explicitly calculate an entrainment and 
deposition flux into, and out of transport Ht, 
(Figure 3; Hairsine and Rose, 1992; 
Wainwright et al., 2008a). Developing better 
parameterisations of equation 4 have been 
limited by the difficulty of measuring sediment 
in transport. Therefore, even at scales where 
monitoring can take place to parameterise 
system processes, competing process 
representations may be derived  reflecting 
process uncertainty, and also different 
experimental setups (Wainwright et al., 
2000). 

 

 
Figure 3. Spatial pattern of at-a-point total 
sediment movement (kg) predicted by 
MAHLERAN soil erosion model when applied 
to an 18x35m runoff plot (Wainwright et 
al.2008b). 

 

Specifying the source terms in equation 2-4 
may also require separate models that 
simulate the behaviour of phenomena that 
control landscape change. In catchment 
systems transport limiting factors controlling 
sediment transport are primarily derived from 
free surface flow. The fundamental equations 
that simulate free surface flow are the 3D 
Navier-Stokes equations (Lane, 1998). 
Although it has been argued that flow 
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sediment interactions should be modelled 
using these equations (Hardy, 2008), various 
simplifications are typically made because of 
computational limitations involved in deriving 
accurate numerical solutions – a class of 
models often termed “reduced complexity” 
models. 

In the case of hydraulic/hydrologic modelling,  
such simplifications include depth averaging 
to two dimensions (Lane et al., 1999) and the 
fully dynamic 1D St Venant equations with 
further simplifications thereof that neglect 
potentially unimportant terms to derive the 
diffusive- and kinematic-wave models (Hunter 
et al., 2007; Tucker and Hancock, 2010). 
Additional flow simplifications have led to a 
number of cellular approaches for flow 
routing, which employ simplified rules to route 
flow in river channels and hillslopes (Favis-
Mortlock, 1998; Nicholas, 2009; Thomas and 
Nicholas, 2002). Furthermore, some 
approaches have sought to employ simpler 
cellular and physically based rules to 
simulate morphological change, and have 
simulated sand dune formation (Figure 4; 
Nield and Baas, 2008), meander migration 
(Coulthard and Van De Wiel, 2006), braided 
river evolution (Thomas et al., 2007), and 
floodplain evolution (Figure 5; Karssenberg 
and Bridge, 2008). 

 

 
Figure 4. Nebkha dunes and vegetation (dark 
bars) simulated with a cellular approach 
(Modified from Nield and Baas, 2008). 

 

The specific conditions under which such 
equations are ‘valid’ should be carefully 
considered (see Lane (1998) and Cao and 
Carling (2002) for a consideration of hydraulic 
equations in a geomorphic context). The 
scale and method by which transport limited 
conditions are modelled may be more 
important than the equations that link 
properties of flow to actual sediment 

movement, given the potential for non-linear 
error propagation. 

The increased availability of high resolution 
topographic data has facilitated the 
application of small scale model 
parameterisations over increasingly large 
domains. For computational reasons and 
availability of other distributed data, however, 
it is often necessary to model at coarser 
resolutions in both space and time. One 
approach to deal with the problem of process 
parameterisation at coarser scales is simply 
to apply the same equations developed at 
smaller scales. However, a key problem with 
this approach is that many if not all 
geomorphic laws are scale dependent. For 
example many geomorphic laws are slope 
dependent, thus increasing model cell size 
reduces slope, and can lead to inaccurate 
predictions of erosion (Kalin et al., 2003). 
Such inaccuracies occur because of how 
changing scale of resolution affects both 
geomorphic laws and the laws governing flow 
(Brazier et al., 2011). Inferring the validity of a 
model equation independently of the grid 
within which it is applied may be difficult 
(Nicholas, 2005). Thus in model development 
changing model scale will affect the validity of 
all processes included in the model. 

Although all spatial parameterisation is 
lumped to some degree, critical scales in the 
landscape that govern larger scale behaviour 
(e.g. the scale of interest) should be 
considered. For example, on hillslopes and in 
channels coarser scale models will fail to 
account for the spatial heterogeneity of flow. 
Given the relationship between sediment 
transport and flow is strong and non-linear, 
neglecting this heterogeneity will lead to an 
under-prediction of erosion and sediment 
transport (Ferguson, 2003; Nicholas, 2000). 
Relying on equilibrium concepts to model 
sub-grid scale channel features is a popular 
approach to deal with this problem in 
landscape evolution models, but relies on 
equilibrium concepts to model potentially 
non-equilibrium behaviour (Nicholas and 
Quine, 2007a; Tucker and Hancock, 2010). 
Therefore the specific scale at which a model 
equation is a valid representation of sub grid-
scale processes is an important consideration 
when developing a numerical model. 

At larger temporal scales of enquiry models 
have to deal with the disparity between the 
timescales of individual events (e.g. rainfall 
runoff) and the evolution of landscapes 
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(Tucker and Hancock, 2010). As a result of 
computational limitations, many landscape 
evolution models applied over larger temporal 
scales relate at-a-point discharge to upslope 
contributing area, which implies runoff is in 
equilibrium with uniform rainfall. Such 
approximations subsequently used to 
simulate sediment transport fail to account for 
spatial and temporal variability. Sub-scale 
events may be important in controlling runoff 
production and therefore the sediment 
transport that actually governs landscape 
behaviour. Simple averaging to an effective 
event may miss that some events are more 
important in controlling erosion and sediment 
transport than others (Nichols, 2006). 
Furthermore, modification of the landscape 
by continued operation of smaller events may 
be (more) important in controlling 
morphological change (Goodrich et al., 2008; 
Sambrook-Smith et al., 2010). 

The issue of what scales to consider and 
therefore what processes to resolve explicitly 
in a given model structure points towards a 
fundamental issue for geomorphologists: 
given natural systems often display non-
linear, threshold responses, it is uncertain - 
and debated in the literature - to what extent 
small scale processes (in both space and 
time) control larger scale system behaviour 
(Lane and Richards, 1997). It is therefore 

uncertain to what extent fine scale processes 
need to be resolved explicitly in geomorphic 
models, or whether simpler treatments, 
relying on for example regime theory, are 
applicable (Nicholas and Quine, 2007). 
Choosing a specific process representation 
therefore reflects a specific modelling 
hypothesis regarding the relevant processes 
governing a different problem. Multiple 
representations, and therefore hypotheses of 
the same processes may require 
investigation (Krueger et al., 2009). To help 
overcome this issue, data are required to 
constrain model parameters and evaluate 
model hypothesis (Kleinhans et al., 2012). 

 
Data and model evaluation 

Data availability is an essential factor 
governing model development, as data 
provides the modeller with the ability to 
constrain model parameters and evaluate the 
quality of model predictions. The evaluation 
of model process representation is an 
essential step as it often occurs prior to 
application of models to investigate so called 
“what if” questions (Michaelides and Wilson, 
2007; Nicholas and Quine, 2010). Such 
model application is often at space and time 
scales over which data are insufficient to 
differentiate between competing model 

Figure 5. Simulated channel belt and floodplain evolution (e.g. by bifurcation, avulsion and 
aggradation) in response to base level rise (Karssenberg and Bridge, 2008). 
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hypotheses (Pelletier, 2011). 

In the ideal case, all process 
parameterisations of equations 2-4 will be 
known and data will be available at the scale 
of the model cell size to constrain model 
parameters and the initial model conditions. 
For example in soil erosion modelling 
distributed information on particle size may 
be required to parameterise both roughness 
for overland flow modelling and the supply 
limiting factors controlling sediment 
entrainment (Wainwright et al., 2008b). 
However, often such data are unavailable, or 
inconsistent with the scale of model 
application (Brazier et al., 2011). 

 

 
Figure 6. Comparison of measured (a) and 
modelled (b) elevation change in the braided 
Avoca River, New Zealand (Nicholas and 
Quine, 2007a).  

 

As a consequence, models may be calibrated 
by comparing model outputs to observations. 
In the case of catchment modelling, models 
are typically calibrated by adjusting internal 
model parameters to derive the best fit 
between model outputs (e.g. sediment/water 
flux at a catchment outlet) and the equivalent 
observations at specific locations (Canfield 
and Goodrich, 2006; Nearing, 2000). In 
morphological modelling, distributed model 
predictions may be compared to: 
observations or morphological change 
(Figure 6; Nicholas and Quine, 2007a); to 
results derived from models with a stronger 
physical basis for prediction (Nicholas, 2009); 

and also to results derived from physical 
model experiments (Nicholas et al., 2009). 

A number of implicit assumptions made in 
model calibration may potentially undermine 
model application; First, it is often assumed 
that parameter uncertainty is the only form of 
modelling uncertainty; Second, that the 
model is equal to reality; Third, the initial 
states are the true initial states (e.g. the DEM 
is error-free); and Fourth, that the 
input/driving conditions and output data to 
evaluate model performance are true. In 
most, if not all situations these conditions do 
not hold due to the problems of modelling an 
open system, where true model validation 
and verification is impossible (Oreskes et al., 
1994). 

As a result of these assumptions incorrect 
model parameters can be identified that 
reproduce catchment outlet conditions (i.e. 
larger scale measurements) with insufficient 
consideration of how well they reproduce the 
internal spatial patterns of process-form 
interaction that ultimately control larger (and 
longer) scale response. Furthermore, model 
parameters may be identified that are highly 
unique to specific settings (Nearing, 1999; 
Nearing, 2000), and inapplicable elsewhere 
because of the non-linear open nature of 
natural systems. Worse still, a number of 
parameter combinations within a specific 
model may provide equally good predictions - 
a form of model equifinality (Brazier et al., 
2000). Similarly, another form of model 
equifinality may occur if the data are 
insufficient to differentiate between 
competing models. Equifinality has arisen at 
a range of scales, from using metrics of 
landscape form to differentiate between 
transport and supply limited models of 
landscape evolution (Pelletier, 2011), 
evaluating alluvial fan evolution (Nicholas and 
Quine, 2010), and at smaller scales when 
applying models with complex, and ill 
constrained parameters (Brazier et al., 2000). 
However, equifinality is not all bad if it avoids 
over confidence in the information content of 
data and therefore the potential rejection of 
good model structures. In the face of 
equifinality, simpler models may be preferred 
that are justified by the data: A model is only 
as good as the data available to constrain 
model structure, parameters, and therefore 
predictions. 
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Accounting for uncertainty when 
developing numerical models 

The preceding sections have discussed the 
main issues to consider in developing and 
applying a numerical model to address a 
geomorphic problem. Even if we consider our 
conceptual model of the system and the 
dominant processes to be accurate, 
computational resources and data availability 
will limit our ability to apply the preferred 
model at the desired scale. Furthermore, 
uncertainty surrounding the relationship 
between process dominance and scale is a 
fundamental geomorphic question governing 
model development. Therefore there is no 
single answer to the three questions posed in 
the introduction, and nor can each be 
answered independently. As a result of these 
factors a model can and will only remain as a 
(working) hypotheses of how processes and 
landforms interact. In order to develop, 
evaluate and use models in geomorphic 
enquiry, uncertainty in both data and models 
needs to be dealt with in a robust manner.  

Considering numerical modelling from a 
Bayesian perspective provides a suitable 
framework for robust model development of 
non-linear open systems. As a result of 
modelling uncertainties we should be 
interested in obtaining the probability 𝑃𝑃( ) that 
the model (M) and its parameters (𝛉𝛉) are a 
correct representation of reality, given the 
available data  (𝐘𝐘),  initial model conditions 
(𝐗𝐗𝟎𝟎), and driving conditions(𝐃𝐃). In order to do 
this we combine our prior beliefs about the 
model structure, 𝑃𝑃(M) and associated 
parameters, 𝑃𝑃(𝛉𝛉|M) (which are dependent on 
the specific model structure) with some data 
using a Likelihood Function (e.g. a measure 
of model performance based on a given 
dataset) 𝑃𝑃(𝐘𝐘|𝛉𝛉, M,𝐗𝐗𝟎𝟎,𝐃𝐃), to obtain our 
posterior belief from Bayes’ equation (Draper, 
1995): 

 

𝑃𝑃(M,𝛉𝛉|𝐘𝐘,𝐗𝐗𝟎𝟎,𝐃𝐃)
∝  𝑃𝑃(𝐘𝐘|𝛉𝛉, M,𝐗𝐗𝟎𝟎,𝐃𝐃)𝑃𝑃(𝛉𝛉|M)𝑃𝑃(M)                      (5) 

 

Thus, our confidence in the model is 
specifically dependent on the data to 
constrain initial conditions, driving conditions 
and that used to evaluate model 
performance. 

In many applications only a single model 
structure is considered, and associated 
parameters are either derived from previous 
studies or are optimised to the specific data 
available. As a result the final two terms in 
Equation 5 collapse to a single set of 
structural assumptions. In such cases 
overconfidence in the data for the reasons 
discussed above – both in its accuracy and 
its general applicability to a wide range of 
settings – may lead to inappropriate model 
rejection and narrowing of the posterior 
probability of all possible models. This may 
lead to an entrenchment of modelling 
concepts that may prevent wider exploration 
of 𝑃𝑃(𝐌𝐌)  and therefore potentially more 
appropriate models for particular 
circumstances (Nicholas and Quine, 2007a; 
Wainwright et al., 2008a). 

A better position to develop models and 
therefore understanding of process-form 
interactions is to consider the uncertainty in 
different model parameters, and therefore 
consider a range of possible combinations of 
parameters 𝑃𝑃(𝛉𝛉|M) that may reproduce the 
data, according to a likelihood function that 
considers potential uncertainty in the data. 
Significant advances have been made in 
developing appropriate likelihood functions in 
the related discipline of hydrology that 
consider different forms of model uncertainty 
(Beven, 2006; Schoups and Vrugt, 2010). 
Such statistical treatments of model 
uncertainty require further adaptation to 
geomorphic problems, including potential 
uncertainty in model boundary conditions and 
elevation data (Hutton and Brazier, 2012; 
Nicholas and Quine, 2010; Wheaton et al., 
2010). Calibration and the related sensitivity 
analysis conducted by exploring adequately 
different parameter combinations that 
constitute 𝑃𝑃(𝛉𝛉|M) can guide the modeller as 
to which parameters are most important in 
controlling system response (Hutton et al., 
2012; Saltelli, 1999). Such information can be 
then used to guide further data collection 
targeted at constraining the most important 
parameters. 

Furthermore, when different models 𝑃𝑃(M)   
and therefore different hypotheses of form-
process interactions are confronted with the 
same observations (Hancock et al., 2011; 
Krueger et al., 2009; Pelletier, 2011; Tatard 
et al., 2008) the strengths and weaknesses of 
different model structures may be identified. 
Such information can be used to guide further 
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data collection and understand the conditions 
(e.g. 𝐘𝐘,𝐗𝐗𝟎𝟎,𝐃𝐃) under which different process 
parameterisations (e.g. M,𝛉𝛉) are valid.  

 

 
Figure 7. Schematic illustration of the iterative 
use of a Bayesian Approach for model 
development 

 

Therefore posterior understanding derived 
from comparison to data can guide further 
data collection (Figure 7). Depending on the 
similarities between the conditions used to 
derive the posterior (e.g. 𝐘𝐘,𝐗𝐗𝟎𝟎,𝐃𝐃) and the 
newly collected data, the posterior in 
equation 5 (e.g. the left hand side) can then 
become the prior (e.g. move to the right hand 
side of Equation 5) for comparison to the 
newly collected data when combined with a 
likelihood function. When using model 
structures and parameters derived from 
previous applications it is up to the modeller 
to consider how appropriate such models are 
to the situation under current consideration, 
and whether such model application is 
supported by available data.  

Bayes’ equation therefore provides both a 
conceptual and probabilistic framework for 
model development that can explicitly 
consider uncertainty in models and data, and 
therefore appropriately frame the use of 
models in developing understanding of 
process-form interactions. Process-form 
understanding is developed iteratively 
through continuous dialogue between models 
and data. Furthermore such development 
provides a more robust grounding for 
subsequent model application to investigate 
“what if” type questions by considering a 
range of possible model structures supported 
by available data, which will prevent 

overconfidence in the results of a single 
model prediction. 

 
Conclusion 
Numerical Models have, especially over 
recent years, become a central tool in 
geomorphic enquiry, and have allowed 
exploration of a range of system dynamics at 
a range of spatial and temporal scales. 
Appropriate use of numerical models should 
consider the scale of model application, the 
potential processes controlling landscape 
form at the scale of application, 
computational resources, data availability, 
and the validity of modelling concepts derived 
from previous modelling applications. 

Given the many uncertainties governing 
model application, not least uncertainty 
regarding fundamental issues concerning 
process dominance and scale, an approach 
to model development considering such 
uncertainties from a Bayesian perspective is 
recommended. Such an approach provides a 
robust framework for model development, 
model rejection and therefore hypothesis 
testing that considers uncertainty in both data 
and models. Advances in data collection and 
specification of errors in available data will 
facilitate robust model development. 
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