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ABSTRACT: Digital Elevation Models (DEMs) are becoming increasingly used in modern 
geomorphological studies. DEMs offer a number of benefits for the characterisation and monitoring 
of landforms. This paper aims to assess the impacts of interpolation approaches for generation of 
DEMs. The interpolation approach used for the raw survey data and any subsequent spatial 
analysis can be affected by errors in the DEMs, leading to potentially inaccurate conclusions being 
drawn. These errors can either be from the source data or as a consequence of the analysis 
procedure. Quantification and description of any potential error present for the interpolated 
datasets is carried out by Root Mean Square Error (RMSE). This is supplemented by analysis into 
the spatial structure and distribution of the datasets via summary statistics and Q-Q plots. Several 
of the most common interpolation approaches for the generation of survey data are reviewed here. 
A case study of applying multiple interpolation approaches to a Terrestrial LiDAR Scan (TLS) 
dataset is presented. This demonstrates the effect the interpolation approach has on the spatial 
structure and derivatives of DEMs. Whilst DEMs are used in many geomorphological studies there 
has to be a tailored, ‘site-specific’ interpolation approach based on study area, data source, terrain 
morphology and characteristics. 
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Introduction 
The use of Digital Elevation Models (DEMs) 
in the analysis and characterisation of the 
landscape is beneficial in modern 
geomorphological studies.  DEM spatial 
analysis not only provides a description of the 
landscape, but is the foundation of three-
dimensional analysis from which other 
morphological descriptors can be derived 
(Zhou and Liu, 2004). These descriptors 
include slope, aspect, curvature (Pirotti and 
Tarolli, 2010) and roughness (McKean and 
Roering, 2004; Pollyea and Fariley, 2011). 
Interpolation of survey data for the creation of 
DEMs is becoming increasingly frequent in 
geomorphology (Prokop and Panholzer, 
2009; Rayburg, 2009; Aguilar et al. 2010).  
DEMs are used in studies ranging from 
landslide analysis (McKean and Roering, 
2004; Scheidl et al. 2008), rockfall analysis 
(Nguyen et al., 2011) fluvial geomorphology 
(Heritage and Hetherington, 2007) and 

landscape characterisation (Glenn et al., 
2006). The recent development of 
progressively higher resolution datasets such 
as aerial Light Detection and Ranging 
(LiDAR) systems and Terrestrial LiDAR 
Systems (TLS) results in the interpolation 
approaches to the raw data often being 
overlooked (Brunsdon, 2009). Increased data 
resolution results in demand for answering 
questions about data at finer resolutions. 
 
Assessing the causes and propagation of 
error in DEMs is useful when dealing with 
large amounts of data (Fisher and Tate, 
2006).  The propagation of DEM error and 
the impact on terrain derivatives including 
slope and aspect is an issue when generating 
DEMs from survey data (Hunter and 
Goodchild, 2007).  Errors in the base DEM or 
from the interpolation approach will have a 
detrimental effect on the terrain derivatives 
(Kienzle, 2004; Aguilar et al., 2005). Small 
errors in the generation of the DEM can lead 
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to inaccurate slope, aspect and curvature 
derivatives which in turn will lead to 
inaccurate predictions and conclusions 
(Januchowski et al., 2010).  The interpolation 
approach used for spatial data analysis can 
influence the accuracy / quality of the surface 
produced (Lloyd and Atkinson, 2001; 
Heritage et al., 2009). 
 
There is often little thought given to the 
implication that the choice of interpolation 
approach will have on the generation of the 
points to a regular DEM grid.  This aim of this 
paper is to assess the impact of interpolation 
approaches for the generation of DEMs from 
survey data.  Objectives include the creation 
of DEMs from survey data using multiple 
interpolation approaches. Summarising and 
identifying sources of error arising from the 
interpolation approach is also assessed. The 
method presented enables the interpolated 
DEMs to be assessed in terms of the 
statistical characteristics of error, spatial 
statistical structure and deviance of 
distribution as a means to easily understand 
spatial structure. Providing an insight into the 
best available interpolation approach when 
creating DEMs for analysis. 
 
 
Interpolation methods available 
for creating DEMs 
Accurate interpolation of survey data, is 
essential for accurate conclusions and 
validations to be accomplished. Numerous 
interpolation approaches can be applied to 
produce DEMs from survey data 
(Podobnikar, 2005).  Interpolation 
approaches for the purposes of this article 
will be limited to four readily available 
interpolation approaches for the generation of 
DEMs from survey data. 
 
Inverse Distance Weighting (IDW) is an exact 
interpolator with the predicted values at 
locations being the same as the observed 
values (Lloyd 2007). IDW works on a local 
neighbourhood approach on the assumption 
that the value at any unsampled point is a 
weighted average of the values of points 
within a certain cutoff distance.  The weights 
are inversely proportional to the power of the 
distance (Burrough and McDonnell,1998; 
Mitas and Mitasova, 2005). Advantages of 
IDW are the easy implementation of the 
technique within GIS programs and that 

interpolations using IDW are not computer 
RAM intensive to produce.  
 
Radial Basis Functions (RBF) are a group of 
exact interpolators that use a basic equation 
dependent on the distance between the 
interpolated point and the sampling points 
(Aguilar et al., 2005).  RBF utilises splines, 
hypothetical surfaces that are fitted to some 
local subset of the data. The analogy often 
used for splines within RBF is the imitation of 
a rubber membrane passing through all the 
data points. The key advantage of the splines 
interpolated using a RBF from survey data is 
the amount of control, which can be achieved 
in the smoothing or tension of the final 
surface. A spline can be forced to fit through 
data points or can be smoothed (Lloyd 2007). 
The advantage of controlling the splines fit to 
the data is that it is possible to make 
predictions outside the range of data, so 
peaks of values that are not necessarily 
sampled may still be predicted. In addition, 
smoothing of the spline, as oppose to forcing 
it through all of the datapoints, resulting in a 
smoothed surface. This is beneficial where 
potential local small-scale variation in 
surfaces can affect the outcome of the 
generated surface, producing a noisy output. 
Disadvantages of the RBF are the stiffness 
and tension of the membrane applied for 
generation can create large gradients. 
Processing time is also significantly longer 
than other approaches due to the number of 
points being sampled. Additionally, 
derivatives of the process might cause 
difficulties in morphological analysis (Mitas 
and Mitasova, 2005). 
  
Two RBF interpolators are used in this 
method, Spline with Tension (SPT) and Thin 
Plate Spline (TPS). SPT differs from TPS due 
to the tensioning variable that is introduced in 
the algorithm, which can provide a better fit to 
the data. Advantages of the SPT include the 
smoothing parameter whereas TPS exhibits a 
more rigid interpolation approach from the 
generation of surfaces. TPS does not offer as 
much control in terms of fitting of the 
predicted surface to the datapoints (Lloyd, 
2007). TPS advantages include the retention 
of small-scale features, which is in contrast to 
weighted averages and trend surfaces 
(Burrough and McDonnell, 1998). 
 
Ordinary Kriging (OK) is one of the most 
widely used forms of prediction from 
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geostatistical analysis, this allows the mean 
of the values, in this case elevation, to vary 
and is estimated for each prediction 
neighbourhood (Lloyd, 2007). The process of 
kriging can be simplified into; generation of a 
variogram, fitting a model to variogram, using 
a model in kriging and finalising the output of 
kriging. Kriging assumes that the spatial 
distribution of phenomena can be modeled 
using a random function. This random 
function for variation can be split into a 
deterministic component, representing 
change over the study area, and a stochastic, 
or random, component.  The random function 
therefore reflects the uncertainty of spatial 
variables and parameters. Kriging develops 
the random function on the basis of the 
generation of a variogram, a measure of the 
spatial variability of a particular variable.   
 
The variogram is used to assess the degree 
to which values differ according to how far 
apart they are in space (Lloyd, 2007). Lag of 
the variogram is used to describe distance by 
which observations are separated. Elements 
and measures of the variance are estimated 
by calculating the squared differences 
between paired observations separated by 
their lag. The variogram therefore 
characterizes the degree of difference in 
values as a function of the distance that they 
are separated by (Lloyd, 2007; pp. 142). A 
variogram can then be fitted with a 
mathematical model used as a tool to 
estimate how close a measured point is to an 
interpolated one. 
 
The variogram model is used within kriging 
as a means of finding appropriate weights for 
available observations and using the model 
fitted to the variogram to obtain the predicted 
values. Kriging is computed using a weighted 
average assigning greater weights to closer 
locations, with these weights being computed 
from the variogram (Brunsdon, 2009). The 
generated predicted variables within the 
neighbourhood controlled by the variogram 
model are used for the interpolation and 
generation of surfaces (Goovaerts 2002; 
Lloyd and Atkinson 2002a; Lloyd and 
Atkinson 2002b; Lloyd and Atkinson 2006). 
Disadvantages of Kriging are it is a relatively 
complex process with numerous forms and 
numerous models that can be applied for the 
prediction of variables (Lloyd, 2007). 
 

Method for interpolating DEMs 
and error assessment 
Survey data can be recorded and interpreted 
from monitoring equipment that records a 
fixed point in space. The workflow for 
collection of any survey dataset will now be 
explained following this an example using a 
collected TLS dataset will be used to illustrate 
this method. 
 

Generating DEMs from survey data 
As described, many interpolation approaches 
exist for the generation of survey data.  For 
the purpose of this article the four 
approaches outlined in the previous section 
will be used, these are popular methods used 
to generate DEMs from survey data and are 
readily available in most software packages. 
Post processing of the raw data is required 
before interpolation approaches can be 
applied. Operator based post-processing 
involves the removal of any erroneous or 
non-ground point from the dataset. Operator 
based post processing is not necessary if 
data are supplied in post-processed format. 
Post processing software is dependant on the 
survey data collection method and the 
manufacturer of survey equipment. This 
could be from total station, GPS, Remote 
sensing or LiDAR. This method allows 
interchangeable software procedures in 
preparing data for analysis. In general a 
processed ASCII .txt files, in this example 
from Leica Cyclone 5.4 (Leica, 2006), are 
exported and a shapefile is generated within 
the ArcGIS software (ESRI, 2010). 
 
This method implements the Geostatistical 
Analyst Extension of ArcGIS 10. Following 
post processing of the raw data the 
interpolation approaches are applied and 
multiple DEMs generated. During 
interpolation a different number of nearest 
neighbours (16, 32, 64) are tested to assess 
the affect this has on the spatial structure and 
error statistics of the generated DEMs. Cross 
validation and error summary statistics in the 
form of the Root Mean Square Error (RMSE) 
are recorded during this stage. Summary 
statistical analysis of interpolated surface, 
along with computation time, are recorded in 
ArcGIS. Q-Q plots of interpolated surfaces 
are also generated within the Open Source R 
Programming Environment (R Project, 2012). 
Q-Q plots are used as a method for 



 Creating DEMs from Survey Data (Interpolation methods and determination of accuracy) 4 

British Society for Geomorphology Geomorphological Techniques, Chap. 2, Sec. 3.1 (2012) 

assessing error of the spatial structure of 
interpolated surfaces. The analysis scheme is 
detailed in Figure 1 and will be explained in 
more details in the following sections. 
 

 
Figure 1: Analysis Scheme for assessment of 
interpolation approach 
 
Error analysis of DEMs 
One of the most common methods to 
measure DEM quality/accuracy is the Root 
Mean Square Error (RMSE) (Hunter and 
Goodchild, 1997; Fisher and Tate, 2006; 
Aquilar et al., 2005).  The RMSE is given by 
the formula: 

 

 
 
(1) 

Where ZDEM = the measurement of elevation 
(or derivative) from DEM, ZREF = higher 
accuracy measurement, from a sample n. 
RMSE is a form of cross validation of the 
dataset, which involves removal of one 
observation using the remaining observations 
to predict the value of the removed value. 
This is then returned to the dataset and the 
next observed value is removed, and then 
repeated for the entire dataset (Lloyd, 2010). 

RMSE as validation measures the difference 
between observed versus predicted 
observations of the data providing a 
representation of the magnitude of error for a 
particular interpolation approach. The RMSE 
as a quality measure has a number of 
different formulas and can include the 
standard deviation of one surface against 
another (Keinzle, 2004: Fisher and Tate, 
2006). Only formula (1) presented, is used in 
this example. The RMSE can be seen to give 
a quick and accurate assessment of the 
supposed DEM quality / accuracy from 
interpolation approaches, however, there are 
a number of drawbacks. RMSE is a global 
spatial measure, and therefore local spatial 
characteristics are not assessed.  Statistical 
analysis and structure of the interpolated 
surfaces provide just as much information of 
the spatial structure and interpolation 
approach for the generation of DEMs from 
survey data (Wise, 2011).  
 

Summary statistical analysis of generated 
surfaces 
In addition to the RMSE, univariate statistics 
and Q-Q plots are used for an assessment of 
the interpolated surfaces. Univariate 
statistical analysis provides descriptive 
statistics for summarizing particular variables 
(Lloyd 2010). It includes statistical measures 
such as the minimum, maximum, standard 
deviation, skewness and kurtosis of the 
distribution of the interpolated surface.  
Univariate statistics have been used with 
reference to the assessment of interpolation 
methods by Heritage et al. (2007). One 
limitation of univariate statistics is that they 
obscure spatial variation within the study 
(Lloyd 2007). The ability for analysing 
distributions of error is based on the 
assumption that the distribution is normal and 
stationary. However, some studies suggest 
spatial autocorrelation statistics may be used 
for error from DEMs and survey data (Hunter 
and Goodchild, 1997; Gallay et al., 2010).  
 
The Q-Q plot will be used to compare the 
structure of how the different interpolation 
approaches used to generate DEMs from 
survey data vary from each other in terms of 
application to the theoretical normal 
distribution. Therefore, providing an 
assessment of any sources of potential error 
when generating the DEMs. The diagnostic 
Q-Q plot should yield a straight line and any 
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variance from the straight line of the 
interpolated surfaces suggests a strong 
deviation from the normal distribution, 
therefore error and potential erroneous 
results (Hohle and Hohle, 2009).  
 
A highly variable output of difference between 
observed and theoretical quantiles within the 
interpolation approach, coupled with high 
variability from the histogram suggests that 
the interpolated surface may not be the best 
estimate for the characterisation and 
generation of DEMs. Analysis of the DEMs 
and derivatives is carried out on selected 
DEMs. These are selected depending on the 
error statistics, generally choosing a range of 
DEMs generated from different interpolation 
approaches for assessment. Finally, the most 
appropriate DEM for the study is selected. 
 
Case study: Statistical analysis 
of interpolation approaches to 
LiDAR data 
The dataset being used is a TLS survey of 
Minnis North, a mud-flowslide landform along 
the A2 Coastal Road, Northern Ireland 
(Figure 2). Failures due to saturation of the 
exposed Lias Clays on the hillslope results in 
periodic failures impacting on the road, 
blocking off local communities (Smith and 
Warke, 2001). TLS monitoring is being 
carried out to assess potential movement and 
morphological changes on the site. DEMs for 
each of the interpolation approaches were 
generated and univariate statistics recorded 
(Table 1).  
 
 

 
Figure 2: Leica HDS3000 Scan station, 
Terrestrial LiDAR scanning surveying slope 
morphology, Co. Antrim, Northern Ireland. 
 

The RMSE for TPS are consistently the 
highest of all the interpolation approaches 
followed by IDW and OK, with the lowest 
RMSE recorded for SPT (Table 1).  The 
highest RMSE error also correlates with an 
overestimation and error in the minimum and 
maximum heights when generating the DEM.  
All interpolated surfaces illustrate negative 
skewness quite close to the mean suggesting 
the high resolution of the Terrestrial LiDAR 
dataset enables accurate interpolation of 
surfaces.  TPS performs least favourably in 
terms of skewness with the distribution being 
more negatively skewed than other 
techniques. This is supported by the kurtosis 
of the distribution with TPS 16 neighbours 
showing the most peaked distribution around 
the mean. The standard deviation of the TPS 
is highest for all interpolation approaches 
demonstrating greatest variation in values 
around the mean. A greater spread of values 
and peak around mean suggests potential 
sources of error and a reduction in accuracy 
of the interpolation approach.  
 
 

 
Figure 3: Probability Q-Q Plot of Interpolated 
Surfaces from LiDAR scan for (a) Inverse 
Distance Weighting 16 Neighbours (b) 
Ordinary Kriging 16 Neighbours (c)Spline 
with Tension with 16 Neighbours (d) Thin 
Plate Spline with 16 Neighbours 
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Table 1:  Univariate statistical measure for multiple interpolation approaches for a single Terrestrial 
LiDAR Scan.  
Interpolation Approaches; Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Spline with Tension (SPT) and Thin Plate Splines 
(TPS). Summary statistics; Root Mean Square Error (RMSE), Mean Error (ME), Standard Deviation (St Dev), 1st Quartile (1st Q), 3rd 
Quartile (3rd Q), Interquartile Range (IQR), Skewness (Skew), Kurtosis (Kurt) and Processing Time (Time(s)).   

    RMSE ME Mean Min Max 
St 

Dev 1st Q 3rd Q IQR Skew Kurt 
Time 
(s)* 

 16 0.181 0.0008 16.611 -0.859 36.111 9.835 8.218 24.903 16.685 -0.040 1.882 84 
IDW 32 0.179 0.0009 16.614 -0.858 36.082 9.837 8.219 24.907 16.688 -0.040 1.881 95 
 64 0.178 0.0011 16.618 -0.858 36.054 9.840 8.225 24.910 16.685 -0.040 1.880 136 

              
 16 0.170 0.0002 16.670 -0.856 36.071 9.833 8.290 24.964 16.674 -0.043 1.882 187 
OK 32 0.170 0.0002 16.672 -0.857 36.085 9.835 8.289 24.972 16.683 -0.043 1.881 382 
 64 0.169 0.0003 16.611 -0.857 35.922 9.837 8.222 24.912 16.690 -0.041 1.879 1117 

              
 16 0.163 0.0005 16.611 -0.859 36.020 9.835 8.221 24.902 16.681 -0.040 1.882 357 
SPT 32 0.162 0.0004 16.612 -0.858 36.012 9.836 8.218 24.910 16.692 -0.041 1.881 789 
 64 0.162 0.0001 16.613 -0.857 35.950 9.836 8.221 24.914 16.694 -0.041 1.880 2540 

              
 16 0.866 0.0002 16.670 -139.30 75.663 9.938 8.333 24.957 16.624 -0.173 3.259 257 
TPS 32 0.293 0.0002 16.665 -75.327 60.813 9.862 8.318 24.934 16.616 -0.066 2.081 457 
 64 0.293 0.0002 16.664 -59.825 57.550 9.824 8.317 24.928 16.612 -0.052 1.969 1184 
 *Processing time on Macbook Pro, 2.4 GHz Intel Core 2 Duo, 8GB RAM running Bootcamp Partition, Windows 64 bit 

 
 
The probability Q-Q plots illustrated in Figure 
3 for a sample of the interpolated surfaces, 
illustrate the non-normality of the interpolated 
surfaces. The TPS shows distinct non-
normality with the residuals and outliers 
causing the plot to become skewed. The 
other interpolation approaches show similar 
plots with the tails of the distributions 
reflecting the summary univariate statistics.  
 
 

Effect of Interpolation Approach on DEM 
and Derivatives 
The effect of the interpolation approach on 
the generation of the DEM for this case study 
is highlighted in Figure 4. DEMs with the 
highest RMSE and most varying univariate 
statistics were used to illustrate the changes.  
Therefore DEMs with 16 neighbours were 
used in the analysis (Table 1).  The DEMS 
are shown along with a derivative of the 
DEM, in this case slope. 
 
Figure 4 indicates the interpolated DEMs 
using IDW, OK and SPT show little variation 
in their structure and the terrain derivative of 
slope. This supports the initial univariate 
statistical analysis. Most notably is that the  

 
TPS derived DEM illustrates large error and 
artefacts in both the DEM and subsequent 
terrain descriptor. This is shown by the 
predominance of lighter areas of higher 
peaked values. Clumping of these lighter 
areas are artefacts of the interpolation 
process. This is the result of an under and 
over sampling of the raw data creating 
erroneous interpolated artefacts in the 
surface. The subsequent second order 
derivative, slope, illustrates these artefacts, 
containing false highs in comparison to the 
other approaches. This should be noted as 
the artefacts could impact on a study of 
characterisation of landform morphology 
producing inaccurate results. 
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Figure 4: Multiple Interpolated DEMs with 16 
neighbours.  Left hand column is interpolated 
DEM and right column is the slope derived 
surfaces from the DEMs. 
 
 
Advantages and limitations 
Visual assessment of the interpolated DEMs 
highlights the potential error and the 
differences between the interpolation 
approaches. TPS, by the nature of the 
interpolation approach, makes predictions 
which are outside the range of the data 
values. Local small-scale variation in the 
dataset has produced a noisy output, a 
limitation of the TPS algorithm. The SPT 
counteracts this with the smoothing and 
tension parameters in the algorithm so that 
the predicted values are a closer fit to the 
actual raw survey data. This creates the 
lowest RMSE but not necessarily the best 
depiction of the raw survey data when 
analysing the output DEMs and statistics. 
Smoothing affects the interquartile range of 

the data and in some cases the maximum of 
the data is beyond the maximum values of 
the data. This can be detrimental when 
generating DEMs of highly variable terrain, as 
it can results in certain areas being cut off. 
Disadvantages of SPT and TPS are that the 
computation time is considerably longer than 
the other interpolation approaches, and as 
the RBFs interpolate outside of the domain of 
data they therefore have the potential to 
create artefacts and false highs or lows in the 
data. 
 
The geostatistical approach using OK for 
interpolation produces a smooth output which 
has the second lowest average RMSE for 
multiple neighbours.  The use of the locally 
varying mean within kriging is beneficial in 
generating an accurate representation of the 
elevation surface.  However, kriging assumes 
a normal distribution and estimates the 
modelled variogram, which may not fit with 
the data used.  
 
One of the benefits of the IDW approach is 
that it only predicts in the ranges of the input 
data.  This is illustrated by the summary 
statistics and DEMs (Table 1; Figure 3 & 4). 
The neighbourhood becomes smoother as 
the moving window is increased which is 
displayed by a reduction in the RMSE.  Lloyd 
and Atkinson (2002) suggest that the use of 
IDW is acceptable when the sample spacing 
is small, as it generally is for LiDAR datasets.  
The cross validation and statistics illustrate 
IDW as comparable to more complex 
approaches that generate a slightly smaller 
RMSE (Lloyd, 2007).  IDW saves on 
computing time compared to more complex 
interpolation procedures.  Disadvantages are 
the potential for the spikes or a ‘duck egg’ 
effect when there is a clustering of data 
points.  ‘Duck eggs’ are characteristic high or 
low spots when IDW is giving greater weights 
to clustering of data sampling locations. 
Generally this is not an issue when using 
LiDAR data as it is overcome by the high 
resolution of data, but must be considered for 
other survey techniques.  
 
Conclusion 
This paper presents a method for determining 
the accuracy of interpolation approaches for 
generating DEMs. Examples of common 
interpolation approaches for generating 
surfaces from survey data are assessed 
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through RMSE, spatial structure and Q-Q 
plots. Key findings indicate RMSE is a good 
indicator of error when assessing 
interpolation to DEMs. IDW is seen as a 
quick and easy exact interpolator and if used 
correctly, can be an effective means of 
generating DEMs from survey data.  RBF are 
complex processor intensive functions and 
what is gained in some areas of the study 
can be lost in others with the potential for 
erroneous results to be higher. OK is similar 
to IDW in the production of the output 
surfaces and can be used if more control is 
required in the generation of the DEMs. 
 
Results are dependant on survey data and 
site-specific conditions. This method provides 
the framework for the assessment of the 
interpolation approach discussing the 
advantages and disadvantages of each. 
Method presented can be applied to many 
environments and collected datasets. 
Researchers should investigate various 
interpolation approaches for generation of 
DEMs, choosing an appropriate tailored site-
specific approach based on statistical 
information generated from the presented 
method.  
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